

Understanding the true meaning of **precision**

Rotary Inspector 5-axis machine tool metrology

Contents

- 04 Key Features
- **04** 5-Axis machine accuracy
- 04 A factory wide solution
- 05 Simple but intelligent measurement software
- 06 Management Oversight
- 08 Compensation
- 08 Green Data
- **08** The Rotary Inspector Difference
- 09 Hardware
- **10** Key measurement parameters

The advantages of five-axis machining are significant. Along with the ability to machine complex parts it can save time, money and reduce risks on set up and fixturing. Monitoring and control of the accuracy of your 5-axis machine is critical to deliver such performance benefits. The Rotary Inspector is designed to determine (and correct) critical performance parameters. Measuring according to ISO 10791-6, it provides a simple approach to ensuring the geometric and dynamic performance of the machine.

Key Features

- 5-axis dynamic measurement (ISO 10791-6)
- Measurement time < 1 min
- Q-value: Geometrical error
- P-value: Surface and form error
- Standard guality report
- Status & trend data: machine, group, cell or factory level
- Compensation option

5-Axis machine accuracy

With the Rotary Inspector, IBS has pioneered technology for the kinematic quality assessment of 5-axis machine tools which addresses the limitations of current techniques.

Based on standard ISO measurements it delivers fully automated measurement in under a minute to derive the total 5-axis machine tool accuracy. It also calculates the pivot line offsets and squareness errors. A standard quality report is produced for each machine measurement simplifying inhouse quality management of machines as well as providing an auditable document of the machine status.

A factory wide solution

To simplify the management of large numbers of machines, two quality figures are derived from the machine measurement.

The Q value is the maximum geometrical error. It provides a boundary for the product dimensional accuracy that may be achieved under 5-axis machining.

The **P value** is a measure of the largest dynamic error of the machine, resulting from issues such as backlash or worn bearings. These errors will be seen in the surface finish of the machined product.

Simple but intelligent measurement software

The Rotary Inspector measurement software is designed for operator use in a machine environment. It provides a fully automated measurement sequence with standardised protocols based on ISO10791-6. Machine results may be viewed instantly on-line or in a standard report.

Standard ISO 10791-6 measurement protocols.

Standard quality report generated for each machine assessment

Machine data available on-line. Example: History of A-axis pivot point and squareness errors.

Management Oversight

The optional **Rotary Inspector Data Manager** module (see p11) provides an overview of the history and current status of all machines integrated into the Rotary Inspector quality procedure. Machines can be monitored at a group, cell or factory level. This provides instant feedback on the status of the installed 5-axis machine base – for improved scheduling, reduced errors and customer compliance.

Central Vataliane	Parameter Single Machine	Piot Elachines Ascending	List Machines Ascentang	124	Chines Due	Plant Report		Update Database			DATABAS	LINCORD .
Plants		Bachi	nes Due To Be Mexa	ured					Current Dr	de: 2016/02/04	Location	_
185 Plant	a d		Flant.	Department	Cel	Machine	Date Of	Lert	heavence	Due For	Single Plant	-
True man		105	Description Engineering	Hall	Laftfaction.	MT Machine 10	1006/12/21	2015/12/11	View	THE DUAL STORETS.	takinine type	27 C
Departme	ente et el	185	Precision Engineering	Hall	LeftSection	MT Machine 31	1998.03/18	3016/01/28	Month	- 04	Astypes	-
Hults		185	Precision Engineering	Hall	LeftSection	MT Machine02	1998/07/24	3015/12/25	Week	Concession in the	1112 112	
Hall2		185	Precision Engineering	Hall2	Modelection	MT_Nectore09	2002/07/07	2016/01/29	Week	DUE		
		185	Precision Engineering	Hal2	MiddeSection	MT_Mechine08	2004/12/05	2015/09/10	Year	OK.		
		185	Precision Engineering	Hal2	LeftSectors	MT_Mechine 12	2007/11/29	1904/01/01	Month	Chimitian III	OFT DATA	
		185	Precision Engineering	Hal2	MiddeSection	MT_Madwie07	2007/11/30	2015/12/29	Day	Chiefe La	GET DRIN.	
Cella		185	Precision Engineering	Hal2	RightSection	MT_Nechine06	2015/01/02	2016/01/05	Month	Oue	CREATE POF	
LeftSecto	20 S	185	Precision Engineering	Helt	LeftSection	MT_Machine04	2015/08/12	2015/06/71	Year	OK.	The second se	
		105	Precision Engineering	HelD.	LeftSection	MT_Machine03	2015/12/28	2016/01/18	Half Year	- CR	19HDW PDP 1	
		185	Precision Engineering	Hel2	RightSection	MT_Nechine05	2016/01/04	2015/12/07	Month	Charles .		
				-				-			CLEAR LIST	
-		-						-				
Machines		_										
MT MACH	me1/2			-				-	-			
MT Mech	ine03											
MT_Mech	ine04											
				1								
				1		17			1			

Measurement scheduling is automatically tracked.

Real time oversight of the performance of the installed machine base.

History and current status available on an individual machine basis.

Compensation

With the geometrical and dynamic error data captured, an optional machine compensation module is available. Figure 1 shows automatic compensation of a 5-axis machine with a Heidenhain 640 controller. In this example, the Q value was reduced from 129µm to 16µm in minutes. Also shown are the underlying maximum individual axis errors (Sx, Sy and Sz).

Green Data

As an Industry 4.0 solution the Rotary Inspector supports smart decisions enabled by the right data. At IBS we have created what we call a Green Data approach to our solutions. This means providing the critical results needed and no more. With the ability to measure more and more, comes the responsibility to avoid data pollution. In the Rotary Inspector data is transformed to the relevant parameters and this alone is stored.

Figure 1. 5-axis machine geometrical error compensation. Calculated Q-value is shown as well as underlying maximum individual axis errors (Sx, Sy and Sz).

The Rotary Inspector Difference

As the complexity and precision of machine tools has increased, traditional methods of measuring their performance are failing. The Rotary Inspector addresses the four limitations of current techniques.

Automation	Dynamic Measurement	Speed	Continuous Monitoring
Automated protocols & unmanned operation supported	The Rotary Inspector measures real dynamic performance	Measurement times under 1 minute support regular quality assessment	Data logging of all machines shows current status and history

Hardware

The Rotary Inspector includes a Trinity wireless measuring head and masterball. Masterball placement can be permanent or pallet based. Optional EROWA mounts are available for accurate master ball positioning.

System hardware components:

- Calibrated Trinity measuring head
- Wireless access point & USB receiver
- Tool setter
- 22mm diameter masterball
- Mounting accessories (Erowa option)
- Travel case
- 4 batteries (3400 mAh) including charger

Trinity measuring head

EROWA mounted master ball

Measuring head				
Measuring range	3,50 mm			
Resolution	0,2 μm			
Sampling rate	2 kHz			
Measuring uncertainty	U1 < 1,0 μm (within 1 mm range)			
Power consumption	> 24 hrs mixed operation			
	1,3 W (=17 hrs) when measuring			
	0,52 W (=42 hrs) when in sleep mode			
Wireless details PSK	2,4 GHz frequency, 802.11b/g/n standard, WPA2 - security		standard,	
Measuring head mounting shaft	\varnothing = 16 mm			
Dimensions	Length: 135 mm	Diameter: 80 mm	Weight: 770 grams	
Masterball				
Roundness error	< 0,6 µm			
Diameter (nominal)	22 mm			
Length	75 mm			

Key measurement parameters

Data Level	Parameter	Definition	Notes	
1	Q-value	Max. geometrical error	Machine quality figures used for high	
	P-value	Max. dynamic error	level tracking.	

Data Level	Parameter	Definition	Notes
2	Sx, Sy, Sz	Max. error in X, Y or Z during 5-axis test	ISO 10791-6 parameters

Data Level	Parameter	Definition	Notes
3	A-axis		2 machine axes measured defined by
	YOA	Y offset A axis	machine type
	ZOA	Z offset A axis	Parameters available for maintenance.
	BOA	Squareness around Y	Also applied in optional compensation
	COA	Squareness around Z	modulo.
	B-axis		Z _{SOU} + C _{SOU} BOC ACC
	ХОВ	X offset B axis	4//
	ZOB	Z offset B axis	Car
	AOB	Squareness around X	C+0*
	СОВ	Squareness around Z	YCOC
	C-axis		
	XOC	X offset C axis	XOC YOUL
	YOC	Y offset C axis	VOC /
	AOC	Squareness around X	
	BOC	Squareness around Y	NOLL

Industry 4.0 Rotary Inspector Data Manager

IBS Precision Engineering BV (Head Office)

Esp 201 5633 AD Eindhoven, The Netherlands Telephone: +31 40 290 1270 Fax: +31 40 290 1279 E-mail: info@ibspe.com **www.ibspe.com**

IBS Precision Engineering Deutschland GmbH

Leitzstraße 45 70469 Stuttgart, Germany Telephone: +49 711 490 66 230 Fax: +49 711 490 66 232 E-mail: info@ibspe.de www.ibspe.de

IBS Precision Engineering sarl

Le Magellan, 7 rue Montespan 91024 Evry Cedex, France Telephone: +33 1 69 47 60 53 Fax: +33 1 69 47 60 70 E-mail: info@ibspe.fr www.ibspe.fr