

High precision in reel-to-reel printed flexible electronics Special VDMA Productronics Online-Seminar

<u>2</u>

<

>

Ultra Precision Measurement

Ultra Precision Measurement

Ultra Precision Engineering

Everything we do is based on our unique metrology expertise

Serving high-tech manufacturing sector, scientific instrument makers and research institutes for over 25 years

< > <u>5</u>

Product Groups

< > <u>6</u>

Product Group

Engineering Solutions

~ > <u>7</u>

In-Line Interferometry for R2R Production

ARINNA – **AR**eal **IN**terferometer for **NA**noscale Surfaces:

- Nanometer accuracy
- High speed measurement (~1s)
- Stepped structures
- Designed for in-line capability

Application challenge: In-line measurement of OPV scribes.

- Real-time data to R2R laser scribe process
- Low reflectivity OPV

ARINNA interferometer

<

In-Line Interferometry for R2R Production

ARINNA – **AR**eal **IN**terferometer for **NA**noscale Surfaces:

- Step 1 OPV measurement
 - Demonstrate ability to measure on static samples
- Step 2 R2R measurement
 - Web stabilisation (x-, y-, z-)

ARINNA interferometer

<

Stationary laser scribe measurement OPV

< > <u>10</u>

Laser scribe measurement OPV

• PET/ITO with laser scribes

- Width = 25.6 µm
- Mean depth = 94.3 nm

Laser scribe measurements at different stages

• P1 scribe

0.1 0.2 0.3 0.4 0.5 0.6 0.6 0.7 0.8 0.9 1.0

< > <u>12</u>

Laser scribe measurements at different stages

• P2 scribe

Laser scribe measurements at different stages

• P3 scribe

- 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10

< > <u>14</u>

Scribe width and depth versus laser power

• P1A, PET/IMI

- Width increases with laser power
- For laser power > 24 %, depth constant

In-line scribe measurement

Challenges for in-line characterisation of OPV scribes with depths from $1\mu m$ to 100nm:

- Vertical web stability (~1µm)
- Moving web (up to 5m/min)
- Limited integration space

In-line scribe measurement

Challenges for in-line characterisation of OPV scribes with depths from $1\mu m$ to 100nm:

- Vertical web stability (~1µm)
- Moving web (up to 5m/min)
- Limited integration space

Buffering option chosen:

- Avoids head acceleration
- Speeds up to 5m/min possible in given space

 $\langle \rangle$

17

Integrated dancer

Dancer solution developed to buffer foils up to 10m/min:

- y-stage for head positioning across the web
- z-stage autofocusing
- 2 off air rollers provide dance

<u>18</u>

>

In-line scribe measurement

- Width = 29.4 µm
- Mean depth = 93.7 nm, maximum depth 114 nm
- Web travel 336 µm during measurement

Improved dancer

To improve dancer performance:

- Marker detection triggers dancer
- <1 μ m web z-stabilization by means of vacuum/air table

<u>20</u>

>

<

Improved dancer - marker detection

< > <u>21</u>

Integrated dancer system

First successful height maps with dancer

Width = 24 µm
Depth = 98 nm

Width = 23 µm
Depth = 101 nm

< > <u>23</u>

Integrated Dancer

• The system, including dancer, has been integrated at the Centre for Nanotechnology, AuTH, Greece.

Pilot line measurement with dancer 1m/min

PET/IMI •

Improved dancer - encoder

- Encoder positioned at the first roller in the dancer system
- Object tracking software enables tracking of web (scribe) during individual scan.
- <1µm motion in x- and y- achieved.

In-line measurement automation

- Automatic measurement at predefined interval
- Automatic feature extraction (depth and width)
- Trend graph of data

- Validity check against predefined range
- TCP/IP communication of depth and width to client

Enable feature detection Template Name: Smartline_laser_scribe_full3.mnt Control Start Measurement Sand Intertage (to prove DDE Decent)	
Control	
Chart Manuagest Condition and the Courts DDC Description	
Start measuremnet Send latest results Create PDF Report	
Measure every 25 Seconds Seconds Send every measurement to clients @ port:3025	

In-line measurement automation

- Automatic measurement at predefined interval
- Automatic feature extraction (depth and width)
- Trend graph of data

- Validity check against predefined range
- TCP/IP communication of depth and width to client

< > <u>28</u>

In-line measurement automation

- Automatic measurement at predefined interval
- Automatic feature extraction (depth and width)
- Trend graph of data

- Validity check against predefined range
- TCP/IP communication of depth and width to client
- Measurement report in PDF of last measurement

< > <u>29</u>

100 measurements in-line 1m/min

- 100nm (nominal) scribe
- At IBS due to Corona
- Stddev static measurements 9.5nm

Average	96.96 nm
Stddev	15.30 nm
Standard error of the mean	1.92 nm
Confidence interval	3.84 nm
Tolerance range	50-150 nm

Depth while dancing

100 measurements in-line 1m/min

• At 1m/min 9 out of 10 measurements were found to be within the 95% confidence level

• 1m/min

• 2m/min

- Successful first measurement of laser scribes on OPV;
- Automated in-line measurements at a predefined location;
- Automated feature extraction scribe width and depth;
- Check of the laser scribe width and depth against predefined acceptance values;
- Display of series of measurements on a trend graph;
- Communication of measurement results to client server for production optimisation

Acknowledgements:

IBS Colleagues: Jorrit de Vries, Rens van der Nolle, Behrooz Daneshkhah, Mario Felius, Peter Overshie AuTH: Printed material and SEM images.

We would like to acknowledge funding received from the European Union's Horizon 2020 research and innovation programme as part of the project SmartLine (*www.smartline-project.eu*).

Thanks for your attention Time to start the dialogue

IBS Precision Engineering BV (Head Office) Esp 201 5633 AD Eindhoven, The Netherlands T +31 40 290 1270 F +31 40 290 1279 E info@ibspe.com

IBSPE.COM