Measurement of HLEM Aspheres

High Level Expert Meeting Samples with Isara 400

IBS Precision Engineering bv, Esp 201, 5633 AD Eindhoven Tel : + 31 – (0)40 – 290 1270, Fax + 31-(0)40 – 290 1279, www.ibspe.com

Overview

- Introduction
 - IBS Precision Engineering
 - Isara 400
- HLEM: Aspherical Lens Measurements
 - Setup & Alignment
 - Results
 - Reversal measurement

Overview

- Introduction
 - Isara 400
- HLEM: Aspherical Lens Measurements
 - Setup & Alignment
 - Results
 - Reversal measurement

Isara 400: Next generation ultra-precision CMM

- Isara 400 offers 3D ultra-precision and a large measuring volume:
 - Measuring volume 400 x 400 x 100 mm
 - Traceable measuring uncertainty: $U_{1D} = 50 \text{ nm} (k=2)$
 - Full 3D measurement (-90° to +90°)
 - Product mass up to 32 kg
 - Air bearings for 3D scanning
 - Exchangeable probe with kinematic mount
 - 3D Probe system: Triskelion 3D ultra-precision tactile probe
 - Other possible probe systems: Optical probes, capacitive probes, oscillating fiber probes etc.

Isara 400 concept

- Abbe principle in 3D:
 - Measurement systems remain in line with measurement point
- X/Y movement of mirror table, Z movement of metrology frame

Isara 400 design concept

Isara 400 design

Overview

- Introduction
 - IBS Precision Engineering
 - Isara 400

• HLEM: Aspherical Lens Measurements

- Setup & Alignment
- Results
- Reversal measurement

Measurement HLEM optics

- All measurements done with tactile probe measurements
- Slope limited by probe body

Measurement setup 2, 3, 4

Measurement setup 5, 6, 7

Measurement setup 8

Measurement setup

- Alignment of part
 - Step 1: manual probing of 9 points
 - Calculate best fit alignment (x,y,z,Rx,Ry,(Rz))
 - Only manual action needed
 - Step 2: perform <u>automated</u> coarse grid
 - Recalculate best fit alignment
- Very quick on-machine alignment
 - Setup time: ~30 min
 - Automated alignment of more complex and free-form optics equally simple

Measurement setup

- Grid measurement of part
 - Perform fine grid of measurement points
 - Recalculate best fit alignment and visualize form deviations

- Scan measurements
 - Not performed (due to time limitation)

HLEM Measurement

Overview

- Introduction
 - IBS Precision Engineering & Leibniz IOM
 - Isara 400

• HLEM: Aspherical Lens Measurements

- Setup & Alignment
- Results
- Reversal measurement

Small Asphere

z(h)=	R($\frac{h^2}{(1+\sqrt{1-(1+k)\frac{h^2}{R^2}})}$	$+\sum_{i=2}^{n}$	$A_{2i}h^{2i}$
R	=	5.446		
k	=	-0.17		
A4	=	-0.00029559792		
A ₆	=	-6.3943709e-006		
A ₈	=	-3.025556e-007	h	z(h)
A10	=	1.409072e-008	0.0	-0.000000
A12	=	-1.2183175e-009	1.0	-0.092160
A14	=	4.0114145e-011	2.0	-0.372932
A ₁₆	=	-6.9463522e-013	4.0 5.0	-1.565864 -2.541486

- Grid spacing: 0.26 mm
- Number of points: 2682
- Measurement time: 9 hours
- Measured diameter: 14.7 mm
- Probe used:

Triskelion A-250-0011 (Ø 500 µm Ruby tip)

• Form deviation w.r.t. theoretical design

recision Engineering

- Best fit optimisation performed to determine position and orientation
- Large deviation on sloped outer ring

• Form deviation w.r.t. theoretical design

- Best fit optimisation performed to determine position and orientation
- Focus on inner part (Ø11 mm)
- Noticeable contamination

• Form deviation w.r.t. theoretical design

- Best fit optimisation performed to determine position and orientation
- Focus on inner part
- Outliers (due to contamination) excluded (circles)

- Deviation from theoretical design, with variable radius
 - Best fit optimisation: HLEM 2018 Sample 2: Best fit measurement: Surface deviation: position, orientation and radius *R* (from aspherical formula)
 HLEM 2018 Sample 2: Best fit measurement: Surface deviation: Region of interest, inside margins [-Inf:200] nm 5 outliers excluded
 RMS = 50 nm

$$-\Delta R = -1.014 \ \mu m \ (-0.019\%)$$

- Deviation from theoretical design, with variable radius and k
 - Best fit optimisation: ньем position, orientation <u>and</u> radius *R* <u>and</u> k (from aspherical formula)
 - $-\Delta R = -1.825 \,\mu m \,(-0.034\%)$
 - $-\Delta k = -0.000595 (-0.350\%)$

Asphere

r(h) = - R(h) = -	$\frac{1}{1+\sqrt{1}}$	h^2 $(1 \cdot$	+k)-	$\frac{\overline{h^2}}{2}$	$-\sum_{i=2}^{n} A_{2i} h^2$
	R	=	20 3	R ² 20 ±0.	05%
	k	=	-1		
	A	=	5.4	42e-006	
	As	=	-8.0	4133	815e-010
	A	=	-2.9	8711	189e-012
	A10	=	-1.4	9179	27e-015
	A12	=	1.3	7773	17e-018
	A14	=	4.4	23e-021	
	A ₁₆	=	-3.4927668e-02		
	66		8	h	z(h)
				0.0	-0.000000

4.0

6.0

8.0

10.0

12.0

14.0

15.0

-0.397422

-0.898064

-1.606074

-2.528276

-3.672870

-5.048712

-5.826023

- Grid spacing: 0.48 mm
- Number of points: 3125
- Measurement time: 9 hours
- Measured diameter: 29.5 mm
- Probe used:

Triskelion A-250-0011 (Ø 500 µm Ruby tip)

• Form deviation w.r.t. theoretical design

- Best fit optimisation performed to determine position and orientation
- Noticeable contamination (same direction, but at larger radius due to less curvature
 - → contamination located on probe tip)

• Form deviation w.r.t. theoretical design

- Best fit optimisation performed to determine position and orientation
- Outliers (due to contamination) excluded (circles)

- Deviation from theoretical design, with variable radius
 - Best fit optimisation:
 Best fit optimisation:
 Best fit optimisation:
 Best fit measurement: Surface deviation:
 Inside margins [-Inf:170] nm
 Outliers excluded
 RMS = 38 nm

$$-\Delta R = 1.232 \,\mu m \,(0.006\%)$$

Non circular cylinder "Aspheric cylinder"

R	=	15.53	15.538 +0.5%		
k	=	-1			
A.	=	1.1926075e-005			
As	=	-2.93	97e-009		
A ₈	=	-1.8718889e-011 -1.7009961e-014 3.5481542e-017			
A1	0 =				
A ₁	2 =				
A,	4 =	6.524	129	96e-020	
		Г	h	z(h)	
		0	0.0	-0.000000	
		1	0.5	-0.128907	
		1	5.0	-1.173737	

10.0

12.0

12.5

-3.332246

4 863642

- Grid spacing: 0.47 mm
- Number of points: 2809
- Measurement time: 8 hours
- Measured area:
- Probe used:

24.4 mm x 24.3 mm

Triskelion A-250-0011 (Ø 500 µm Ruby tip)

Form deviation w.r.t. theoretical design

HLEM 2018 - Sample 4: Best fit measurement: Surface deviation:

- Best fit optimisation performed to determine position and orientation
- Not affected by contamination on probe tip due to curvature direction

- Deviation from theoretical design, with variable radius
 - Best fit optimisation: HLEM 2018 Sample 4: Best fit measurement: Surface deviation: position, orientation and radius RMS = 188 nm
 R (from aspherical formula) 10

$$-\Delta R = 1.643 \,\mu m \,(0.011\%)$$

Cylinder Optic

- Grid spacing: 0.39 mm
- Number of points: 5184
- Measurement time: 17.5 hours
- Measured area:
- Probe used:

27.4 mm x 27.5 mm Triskelion C-500-0012 (Ø 1000 µm Ruby tip)

• Form deviation w.r.t. theoretical design

Best fit optimisation performed to determine position and orientation

• Form deviation w.r.t. theoretical design

recision Engineering

- Best fit optimisation performed to determine position and orientation
- Outlier (due to contamination) excluded (circle)

36

- Deviation from theoretical design, with variable radius
 - Best fit optimisation:
 Best fit optimisation:
 Position, orientation and radius
 R (from aspherical formula)
 HLEM 2018 Sample 5: Best fit measurement: Surface deviation: inside margins [-Inf:400] nm
 I outliers excluded
 RMS = 48 nm

$$-\Delta R = -5.462 \,\mu m \,(-0.011\%)$$

- Convex toroid
- Rv = 40 mm
- Rh = 42 mm
- Diameter = 50 mm
- Assumed formula:

$$z(x,y) = \sqrt{\left(\sqrt{R_h^2 - x^2} + R_v - R_h\right)^2 - y^2} - R_v$$

- Grid spacing: 0.53 mm
- Number of points: 6286
- Measurement time: 22 hours
- Measured diameter: 47 mm
- Probe used:

Triskelion C-500-0012 (Ø 1000 µm Ruby tip)

• Form deviation w.r.t. theoretical design

 Best fit optimisation performed to determine position and orientation

• Minus sphere of R=40.9 mm

HLEM 2018 - Sample 6: Measurement minus sphere R=40.900000mm

• Minus sphere of Rv

• Minus sphere of Rh

4th order polynomial freeform "wild curvature"

¹⁾ H=Ax^2+By^2+Cx^4+Dy^4

- Grid spacing: 0.37 mm
- Number of points: 4106
- Measurement time: 14 hours
- Measured diameter: 26.2 mm
- Probe used:

Triskelion C-500-0012 (Ø 1000 µm Ruby tip)

• Form deviation w.r.t. theoretical design

Best fit optimisation performed to determine position and orientation

• Form deviation w.r.t. theoretical design

recision Engineering

- Best fit optimisation performed to determine position and orientation
- Focus on inner part by excluding large deviations

4th order polynomial freeform "mild curvature"

¹⁾ $H = Ax^{2} + By^{2} + Cx^{4} + Dy^{4}$

- Grid spacing: 0.31 mm
- Number of points: 5679
- Measurement time: 15.75 hours
- Measured diameter: 25.7 mm
- Probe used:

Triskelion C-500-0012 (Ø 1000 µm Ruby tip)

• Form deviation w.r.t. theoretical design

- Best fit optimisation performed to determine position and orientation
- Noticeable contamination

• Form deviation w.r.t. theoretical design

- Best fit optimisation performed to determine position and orientation
- Outliers (due to contamination) excluded. (circles)

Overview

- Introduction
 - IBS Precision Engineering & Leibniz IOM
 - Isara 400

• HLEM: Aspherical Lens Measurements

- Setup & Alignment
- Results
- Reversal measurement

180° rotated (Rz) (Contaminated measurements removed)

recision Engineering

D58 Y-scan repeatability

2σ in nm						
	Y- 0.1 mm/s	Y- 0.2 mm/s	Y+ 0.1 mm/s	Y- 0.2 mm/s		
Y- 0.1 mm/s	0	13.9853	10.3068	11.1690		
Y- 0.2 mm/s	13.9853	0	16.1184	17.6691		
Y+ 0.1 mm/s	10.3068	16.1184	0	13.7119		
Y- 0.2 mm/s	11.1690	17.6691	13.7119	0		

