


# SPINDLE MEASUREMENT TOOLS ANALYZER SYSTEMS



# **INTELLIGENT MACHINING**

## **PRODUCTION ENGINEER, MACHINIST OR MAINTENANCE PROFESSIONAL**

With our partner Lion Precision, we offer spindle measurement products that will allow you to:

- quickly prove with data the overall condition of a spindle
- determine a machine's best and worst operating speeds
- identify potential root causes of issues

### PLANT MANAGER, PRODUCTION SUPERVISOR OR ENGINEERING LEAD

Imagine if you could:

- define the best machine for the job
- minimize unnecessary spindle rebuilds or replacements
- better manage your machine tools

### **RESEARCHER, PROFESSOR, SCIENTIST OR METROLOGIST**

Imagine technology that provides you with data that will help you:

- expand your knowledge of a machine's performance
- allow you to advance a machine to a higher level of precision
- all while speeding up your research process and improving lab capabilities

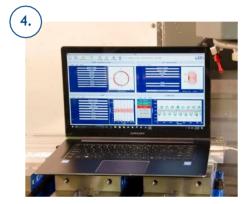


#### SOLVE PROBLEMS FOR:

- Production / Machine Shops
- OEM Design Centers
- Maintenance / Calibration
- Universities
- National Labs

## **HOW IT WORKS**




**Mount Target in Spindle** 



**Place Electronics** 



Set Up Probe Nest



Start Up Software



Align and Test

## MACHINE MEASUREMENT TOOLS

## Spindle Error Analyzer (SEA)



Flexible configuration for sophisticated measurements and highest precision spindles. Best analysis device available.

## SpindleCheck Analyzer (SCA)



Detailed analysis of machine performance withhigh resolution.

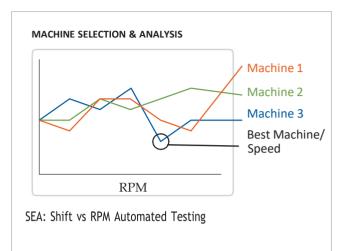
## **SETUP & OPERATION**



#### Configuration

Each measurement device comes with a configuration interface which includes the choice of multiple languages, targets, diagnostic and analytic settings that can be adjusted to any application. SEA / SCA




#### Oscilloscope

The Oscilloscope is a utility display that emulates a basic oscilloscope, allowing a time-based view of the data acquired on any probe channels. **SEA / SCA** 



#### **Probe Meter**

Probe Meter is an analog meter indicating the current probe/target gap of the selected probe. It is often used as a tool for setup and troubleshooting. SEA / SCA



## THERMAL MEASUREMENT

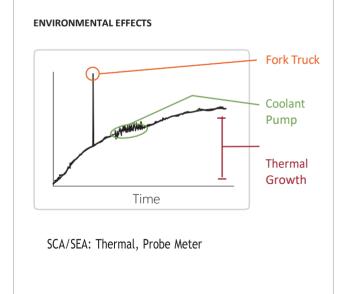


#### Thermal

Thermal testing allows for rotating or non-rotating spindle measurement to analyze the effect temperature changes have on the machine tool. It is often used in troubleshooting environmental conditions or determining thermal stability. SEA / SCA



#### Warm Up


SEA

When a cold spindle begins to rotate, friction heating of the bearings causes the spindle to expand (primarily in the Z axis). Knowing the time until a machine stabilizes allows for more precise scheduling/planning, less scrap, and may expose machine frame distortions. **SEA / SCA** 



#### Temp & Encoder Input Module

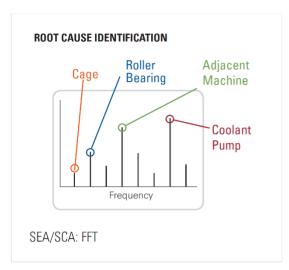
Uses sensors for monitoring temperature change. Also includes an encoder and index input for triggering the measurement.



## **POSITION MEASUREMENT**



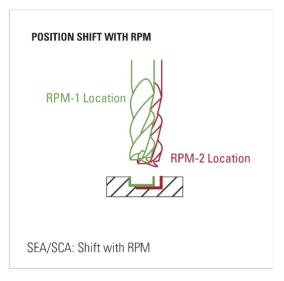
#### FFT


The FFT analysis test acquires data from a single probe and displays the relative amplitude of its frequency components. A graph of amplitude vs. frequency is produced. FFT data is used in identifying bearing frequencies, resonant frequencies, harmonics, RPM and structural vibration.

SEA / SCA



#### **Position Shift**


The axis of rotation of the spindle may shift location with changes in RPM. Charting any changes in position of the axis of rotation of the spindle against RPM allows the operator the ability to adjust RPM or offsets to correct any errors. SEA / SCA





#### **Meter Module**

Provides a digital display of the displacement. **SEA** 





#### **Total Error**

While the individual components of the "Total Rotation Error" provide insight into specific part errors; the Total Rotation Error (total error motion) gives a general condition of a spindle and a quick comparison of the condition of spindles on multiple machines. **SEA / SCA** 



#### **Runout/TIR**

Often used in manufacturing, Runout will affect the diameter of holes and straightness of cuts. It should not change dramatically with changes in speed. Changes in Runout are a potential sign of significant wear causing the system to shift or bend as the spindle turns faster. **SEA / SCA** 



#### Synchronous Error/ Roundness Capability

The portion of the total error motion that repeats every revolution and relates to the ability of the machine to produce round features when drilling or boring in a milling operation or when doing longitudinal turning on a lathe. SEA / SCA



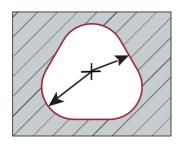
#### Asynchronous Error/ Surface Roughness

The portion of the total error motion that does not repeat from revolution to revolution. These are caused by machine vibrations and in ideal cutting conditions with a single point tool would be a reasonable indicator of the surface roughness (Ra) of the finished part. SEA / SCA

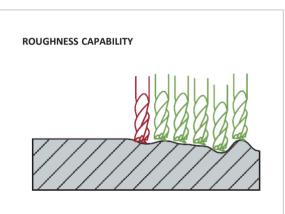


#### **Radial Fixed Sensitive/Turning**

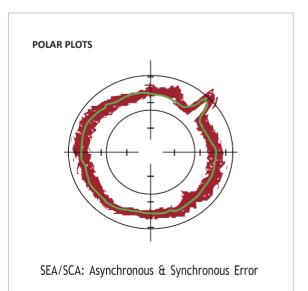
Radial Fixed Sensitive acquires displacement in one axis relative to spindle angular location and displays the data in a polar plot. Most often used in lathe applications.


SEA / SCA




#### Radial Rotating Sensitive/Milling

Radial Rotating Sensitive acquires displacement data from two probes positioned 90° apart. The probes measure the X and Y displacement of the axis of rotation to generate a polar plot. Most often used when measuring mills. SEA / SCA


#### ROUNDNESS CAPABILITY



SCA/SEA: Radial Synchronous Error Motion

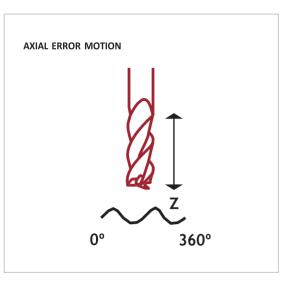


SCA/SEA: Radial and Axial Asynchronous Error Motion





#### Axial


Axial Error Motion utilizes displacement data from one probe in the Z axis. The probe measures the axial displacement of the spindle. In addition to a polar plot, axial error motion can also be displayed in a linear, oscilloscope type display.

SEA / SCA

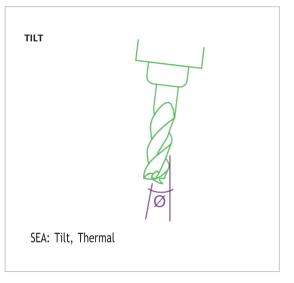


#### **Tilt Thermal**

Using two probes in either the X or Y direction, thermal tilt can determine if there is a distortion of the machine frame which will cause a much larger error than simple thermal expansion. **SEA** 






#### **Tilt Dynamic**

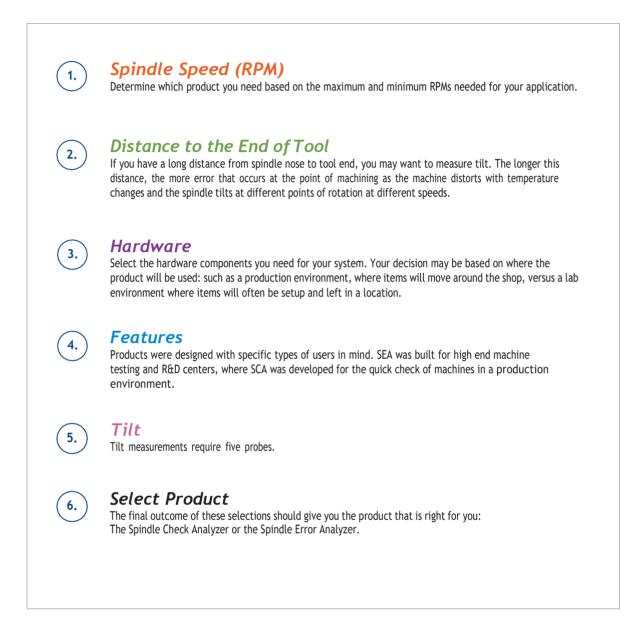
Using two probes in either the X or Y direction, dynamic tilt is measured to determine how much worse the synchronous error (related to roundness) and asynchronous error (related to surface roughness) are as the distance from the spindle nose increases. Results are displayed as polar plots or 3D plots. **SEA** 



#### **Donaldson Reversal**

Donaldson Reversal displays data from two Radial – Fixed Sensitive tests combined in such a way that form errors in the target (out of roundness) are separated from the synchronous error motion of the spindle. **SEA** 




## HARDWARE



Travel Case SEA / SCA

## **SELECT A PRODUCT FAMILY**

To find the right product, determine the following criteria:



#### **STANDARDS & REFERENCES**

- ISO230: Test Code for Machine Tools, Part 3: Determination of Thermal Effects (SEA/SCA) Part 7: Geometric Accuracy of Axes of Rotation(SEA/SCA) Part 2: Determination of Accuracy and Repeatability of Positioning Numerically Controlled Axes (SCA).
- ANSI/ASME Standard B5.54-2005, Methods for Performance Evaluation of CNC Machining Centers (SEA/SCA)
- ANSI/ASME B5.57-2012, Methods for Performance Evaluation of CNC Turning Centers (SEA/SCA)
- ANSI/ASME B89.3.4-2010, Axes of Rotation, Methods for Specifying and Testing (SEA/SCA)
- JIS B 6190-7, Test Code for Machine Tools Part 7, Geometric Accuracy of Axes of Rotation (SEA/SCA)





|                    |                                | SEA                    | SCA                    |
|--------------------|--------------------------------|------------------------|------------------------|
|                    |                                | Spindle Error Analyzer | Spindle Check Analyzer |
|                    | Max RPM                        | No Limit*              | 120000                 |
| PERFORMANCE        | Min RPM                        | <1                     | 12                     |
|                    | Using Long Tool (>300mm)       | $\checkmark$           |                        |
|                    | Using Short Tool (<300mm)      | $\checkmark$           | $\checkmark$           |
|                    | Channels/Package               | 1-5                    | 3                      |
|                    |                                |                        |                        |
|                    | Meter Module                   | $\checkmark$           |                        |
| RE                 | Encoder Input                  | ✓                      |                        |
| M WC               | Temperature Module (7 sensors) | $\checkmark$           |                        |
| HARDWARE           | Lathe/Swiss Adapters           | ✓                      | ✓                      |
|                    | Carrying Case                  | ✓                      | ✓                      |
|                    |                                |                        |                        |
| z                  | Probe Meter                    | $\checkmark$           | $\checkmark$           |
| OPERATION          | Oscilloscope                   | ✓                      | ✓                      |
|                    | Automated Testing              | ✓                      |                        |
|                    | Analysis Configuration         | ✓                      |                        |
|                    |                                |                        |                        |
|                    | Total Error                    | $\checkmark$           | $\checkmark$           |
|                    | Fixed Sensitive Radial         | $\checkmark$           | $\checkmark$           |
|                    | Axial                          | $\checkmark$           | $\checkmark$           |
| INO                | Runout/TIR                     | $\checkmark$           | $\checkmark$           |
| DTA.               | Rotating Sensitive Radial      | ✓                      | $\checkmark$           |
| / R(               | Roughness/Asynchronous         | $\checkmark$           | $\checkmark$           |
| MIC                | Roundness/Synchronous          | ✓                      | $\checkmark$           |
| DYNAMIC / ROTATING | Donaldson Reversal             | $\checkmark$           |                        |
|                    | Tilt Dynamic                   | $\checkmark$           |                        |
|                    |                                |                        |                        |
| POSITION           | Position Shift (Shift vs. RPM) | ✓                      | ✓                      |
|                    | Vibration                      | ✓                      | ✓                      |
|                    | FFT                            | ✓                      | ✓                      |
|                    |                                |                        |                        |
| THERMAL            | Thermal Drift (Non-Rotating)   | ✓                      | $\checkmark$           |
|                    | Warm-Up (Rotating)             | ✓                      | $\checkmark$           |
|                    | Tilt Thermal                   | ✓                      |                        |
|                    | Brochure Page »                | 10                     | 12                     |

\* Limited by DAQ speed and number of channels.

Export License - Because of high resolutions, export of some systems to some countries requires an export license.



# SPINDLE ERROR ANALYZER

## Expand your capabilities with the ultimate in precision and analysis.

#### **SELECTION STEPS:**

1.

2.

#### Spindle Application

**Spindle based on air bearing** Nanometer precision, often with two measurementranges (10 & 50 micrometers).

Spindle based on oil bearing Applications with precision requirements in the tens of nanometers that need a larger range of 50 micrometers plus thermal growth ranges of 250 micrometer.

Spindle based on rolling element bearings (hybrid) Sub-micrometer precision hybrid spindles with higher speed and accuracy needing a 50 micrometer range for dynamic measurements and up to 250 micrometer ranges for the thermal measurements.

Spindle based on rolling Element Bearings (Conventional) High quality production spindles with micrometer precision requirements wanting to test dynamic performance plus thermal growth measurements of 50 and 250 micrometer range.

## Number of Probes Required

The number of probes required will be based on the measurement requirements you have. The numbers of probes was determined on the product selection table on page 9.

## 3.) Accessories

**Temp Encoder Module** Select this accessory if you want to use sensors for monitoring temperature change. Also includes an encoder input for triggering the measurement (TMP190).

Meter Module Provides a digital display of the displacement in metric or inch units (MM190).

## 4.)

**Enclosures Slots** Selected based on the number of channels required

(# of probes + accessories + any future expansion)

## 5. )

### Probe & Calibration Range

While there are standard calibrations, Lion Precision can customize calibration ranges to fit your specific needs.

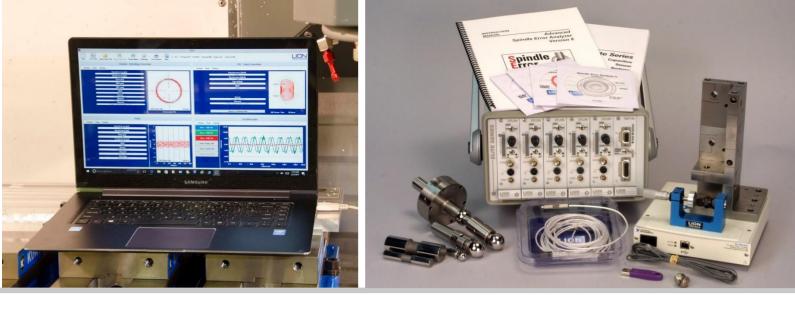
See the table on page 11 for an overview of these selection options





MFG3-1905 MASTERBALL 1" SINGLE or DOUBLE. FIXED ECCENTRICITY. 20MM SHANK




**4900-0001 & 4900-0002** 3 PROBE NEST. OPTIONAL 5 PROBE ADAPTOR



PROBES



P017-8900 USB WITH SEA SOFTWARE



|                                                                  |                     | Acces  | sories | ies Enclosure |           | ts        | Range |        |
|------------------------------------------------------------------|---------------------|--------|--------|---------------|-----------|-----------|-------|--------|
| Spindle<br>&<br>Application                                      | Number<br>of Probes | TMP190 | MM190  | 3             | 6         | 8         | 50 µm | 250 µm |
| - <del>P</del>                                                   | 3                   |        |        | MSSF-2343     | MSSF-2346 | MSSF-2348 | ٧     | ٧      |
| nal)<br>/brid                                                    |                     | ٧      |        |               | MSSF-2356 | MSSF-2358 | v     | ٧      |
| herr<br>ng<br>(H)                                                |                     |        | ٧      |               | MSSF-2366 | MSSF-2368 | v     | ٧      |
| Air Bearing (Thermal)<br>Oil-Bearing<br>Rolling Element (Hybrid) |                     | ٧      | ٧      |               | MSSF-2376 | MSSF-2378 | v     | ٧      |
| iring<br>il-Be<br>ilem                                           | 5                   |        |        |               | MSSF-2546 | MSSF-2548 | v     | ٧      |
| Веа<br>Лg E                                                      |                     | ٧      |        |               | MSSF-2556 | MSSF-2558 | ٧     | ٧      |
| Air<br>ollir                                                     |                     |        | ٧      |               |           | MSSF-2568 | V     | ٧      |
| ~                                                                |                     | ٧      | ٧      |               |           | MSSF-2578 | ٧     | ٧      |
|                                                                  | 3                   |        |        | MSSS-1343     | MSSS-1346 | MSSS-1348 |       | ٧      |
|                                                                  |                     | ٧      |        |               | MSSS-1356 | MSSS-1358 |       | ٧      |
| ient<br>nal)                                                     |                     |        | ٧      |               | MSSS-1366 | MSSS-1368 |       | ٧      |
| llem                                                             |                     | ٧      | ٧      |               | MSSS-1376 | MSSS-1378 |       | ٧      |
| Rolling Element<br>(Conventional)                                | 5                   |        |        |               | MSSS-1546 | MSSS-1548 |       | ٧      |
|                                                                  |                     | ٧      |        |               | MSSS-1556 | MSSS-1558 |       | ٧      |
| ě Č                                                              |                     |        | ٧      |               |           | MSSS-1568 |       | ٧      |
|                                                                  |                     | ٧      | ٧      |               |           | MSSS-1578 |       | ٧      |

Velocity Shipping Product







P014-2292 CALIBATION CHECK FIXTURE

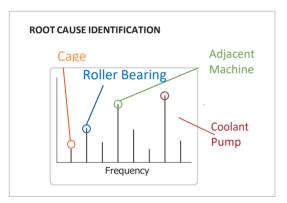


**4900-0108** HEX KEY





P017-0100 TRAVEL CASE




# SPINDLE CHECK ANALYZER

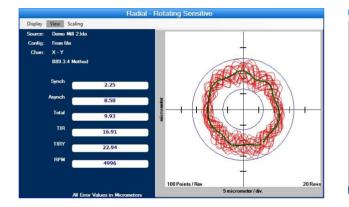
## Analyze machine performance for detailed analysis and troubleshooting

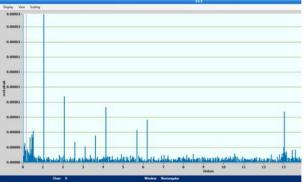
#### Benefits include:

- Portable hardware & easy set-up
- Important data clearly displayed including Polar Plots, Oscilloscope & FFT graphs
- Ideal for the technical user that wants to link error motions to possible root causes



#### **SELECTION STEPS:**


(1.) Target Pin Size


| Region | Precision | Target Pin Size | Part #          |
|--------|-----------|-----------------|-----------------|
| WORLD  | Standard  | 8mm             | MFG5-0235       |
|        |           | 20mm            | MFG5-0233       |
|        |           | Velocity S      | hipping Product |

#### \*Electronics also included.











\*Electronics also included.



SCA KIT\*

4490-0515 FIVE METER USB CABLE







P017-7490 TRAVEL CASE

## ACCESSORIES

SCA



MFG5-1240 8 MM TARGET PIN MFG5-1241 20 MM TARGET PIN

SEA



4900-0026

MASTERBALL 1" DOUBLE ADJUSTABLE ECCENTRICITY 20MM SHANK



| 8017-3911 | ADAPTOR 1.00"          |
|-----------|------------------------|
|           | DIAMETER WITH FLATS    |
| 8017-3901 | ADAPTOR 1.00"          |
|           | DIAMETER WITHOUT FLATS |
| 8017-3912 | ADAPTOR 1.25"          |
|           | DIAMETER WITH FLATS    |
| 8017-3902 | ADAPTOR 1.25"          |
|           | DIAMETER WITH FLATS    |
| 8017-3905 | 20 MM DIAMETER         |
|           | WITHOUT FLATS          |
| 8017-3906 | 25 MM DIAMETER         |
|           | WITHOUT FLATS          |
| 8017-3910 | 3/4" DIAMETER          |
|           | WITH FLATS             |
| 8017-3900 | 3/4" DIAMETER          |
|           | WITHOUT FLATS          |

These lathe adaptors insert into the tool holder and may be used to mount a probe holder.

#### IBS Precision Engineering BV (Head Office)

Esp 201 5633 AD Eindhoven, The Netherlands Tel: +31 40 290 1270 E-mail: info@ibspe.com www.ibspe.com

#### IBS Precision Engineering Deutschland GmbH

Leitzstraße 45 70469 Stuttgart, Germany Tel: +49 711 490 66 230 E-mail: info@ibspe.de www.ibspe.de

#### IBS Precision Engineering France sarl

10 rue Michel Servet 59000 LILLE Cedex, France Tel: +33 3 66 21 25 24 E-mail: info@ibspe.fr www.ibspe.fr

#### IBS Precision Engineering Ltd

Blythe Gate, Blythe Valley Park, Solihull B90 8AH, United Kingdom Tel: +44 7464210568 E-mail: info@ibspe.com www.ibspe.com